HOW IS RADIOFREQUENCY RADIATION MEASURED?
An RF electromagnetic wave has both an electric and a magnetic component (electric field and magnetic field), and it is often convenient to express the intensity of the RF environment at a given location in terms of units specific to each component. For example, the unit “volts per meter” (V/m) is used to express the strength of the electric field (electric “field strength”), and the unit “amperes per meter” (A/m) is used to express the strength of the magnetic field (magnetic “field strength”). Another commonly used unit for characterizing the total electromagnetic field is “power density.” Power density is most appropriately used when the point of measurement is far enough away from an antenna to be located in the “far-field” zone of the antenna.
Power density is defined as power flow per unit area. For example, power density is commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (µW/cm2). One mW/cm2 equals 10 W/m2, and 100 µW/cm2 equal one W/m2. With respect to frequencies in the microwave range, power density is usually used to express intensity of exposure.
The quantity used to measure the rate at which RF energy is actually absorbed in a body is called the “Specific Absorption Rate” or “SAR.” It is usually expressed in units of watts per kilogram (W/kg) or milliwatts per gram (mW/g). In the case of exposure of the whole body, a standing ungrounded human adult absorbs RF energy at a maximum rate when the frequency of the RF radiation is in the range of about 70 MHz. This means that the “whole-body” SAR is at a maximum under these conditions. Because of this “resonance” phenomenon and consideration of children and grounded adults, RF safety standards are generally most restrictive in the frequency range of about 30 to 300 MHz. For exposure of parts of the body, such as the exposure from hand-held mobile phones, “partial-body” SAR limits are used in the safety standards to control absorption of RF energy (see later questions on mobile phones).